首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3754篇
  免费   352篇
  国内免费   582篇
化学   2724篇
晶体学   25篇
力学   862篇
综合类   58篇
数学   650篇
物理学   369篇
  2023年   53篇
  2022年   76篇
  2021年   121篇
  2020年   157篇
  2019年   142篇
  2018年   117篇
  2017年   146篇
  2016年   186篇
  2015年   131篇
  2014年   194篇
  2013年   282篇
  2012年   164篇
  2011年   212篇
  2010年   158篇
  2009年   225篇
  2008年   219篇
  2007年   229篇
  2006年   242篇
  2005年   220篇
  2004年   203篇
  2003年   225篇
  2002年   133篇
  2001年   111篇
  2000年   87篇
  1999年   89篇
  1998年   74篇
  1997年   72篇
  1996年   61篇
  1995年   82篇
  1994年   57篇
  1993年   41篇
  1992年   37篇
  1991年   30篇
  1990年   27篇
  1989年   19篇
  1988年   10篇
  1987年   12篇
  1986年   8篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   7篇
  1981年   2篇
  1979年   5篇
  1972年   3篇
  1971年   1篇
  1957年   1篇
排序方式: 共有4688条查询结果,搜索用时 218 毫秒
11.
The allyl phosphoester group is shown to be a protecting group for the synthesis of anionic polyphosphodiesters. Our strategy relies on the synthesis of a cyclic phosphate monomer bearing a pendant allyl phosphoester group, its easy purification by fractional distillation, its organocatalyzed ring‐opening polymerization by 1,8‐diazobicyclo[5.4.0]undec‐7‐ene (DBU) and 1‐[3,5‐bis(trifluoromethyl)phenyl]‐3‐cyclohexyl‐thiourea (TU). Finally, the deprotection of the allyl phosphoester group is carried out by reaction with sodium benzenethiolate in the absence of any detectable degradation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2642–2648  相似文献   
12.
Tin oxide (SnO2) nanotubes with a fiber‐in‐tube structure have been prepared by electrospinning and the mechanism of their formation has been investigated. Tin oxide‐carbon composite nanofibers with a filled structure were formed as an intermediate product, which were then transformed into SnO2 nanotubes with a fiber‐in‐tube structure during heat treatment at 500 °C. Nanofibers with a diameter of 85 nm were found to be located inside hollow nanotubes with an outer diameter of 260 nm. The prepared SnO2 nanotubes had well‐developed mesopores. The discharge capacities of the SnO2 nanotubes at the 2nd and 300th cycles at a current density of 1 A g?1 were measured as 720 and 640 mA h g?1, respectively, and the corresponding capacity retention measured from the 2nd cycle was 88 %. The discharge capacities of the SnO2 nanotubes at incrementally increased current densities of 0.5, 1.5, 3, and 5 A g?1 were 774, 711, 652, and 591 mA h g?1, respectively. The SnO2 nanotubes with a fiber‐in‐tube structure showed superior cycling and rate performances compared to those of SnO2 nanopowder. The unique structure of the SnO2 nanotubes with a fiber@void@tube configuration improves their electrochemical properties by reducing the diffusion length of the lithium ions, and also imparts greater stability during electrochemical cycling.  相似文献   
13.
Recently, oral absorption of cyclic hexapeptides was improved by N‐methylation of their backbone amides. However, the number and position of N‐methylations or of solvent exposed NHs did not correlate to intestinal permeability, measured in a Caco‐2 model. In this study, we investigate enantiomeric pairs of three polar and two lipophilic peptides to demonstrate the participation of carrier‐mediated transporters. As expected, all the enantiomeric peptides exhibited identical lipophilicity (logD7.4) and passive transcellular permeability determined by the parallel artificial membrane permeability assay (PAMPA). However, the enantiomeric polar peptides exhibited different Caco‐2 permeability (Papp) in both directions a–b and b–a. The same trend was observed for one of the lipophilic peptide, whereas the second lipophilic enantiomer pair showed identical Caco‐2 permeability (within the errors). These findings provide the first evidence for the involvement of carrier‐mediated transport for peptides, especially for those of polar nature.  相似文献   
14.
We investigate the cyclic mechanical behavior in uniaxial tension of three different commercial thermoplastic polyurethane elastomers (TPU) often considered as a sustainable replacement for common filled elastomers. All TPU have similar hard segment contents and linear moduli but sensibly different large strain properties as shown by X-ray analysis. Despite these differences, we found a stiffening effect after conditioning in step cyclic loading which greatly differs from the common softening (also referred as Mullins effect) observed in chemically crosslinked filled rubbers. We propose that this self-reinforcement is related to the fragmentation of hard domains, naturally present in TPU, in smaller but more numerous sub-units that may act as new physical crosslinking points. The proposed stiffening mechanism is not dissimilar to the strain-induced crystallization observed in stretched natural rubber, but it presents a persistent nature. In particular, it may cause a local reinforcement where an inhomogeneous strain field is present, as is the case of a crack propagating in cyclic fatigue, providing a potential explanation for the well-known toughness and wear resistance of TPU.  相似文献   
15.
The active six-membered cyclo-FLP 6 undergoes a rapid P/B addition reaction to carbon dioxide. At elevated temperature, the resulting heterobicyclo[2.2.2]octane derived product 7 undergoes ring opening and equilibrates with the cyclotetramer (7)4 . In the large macrocyclic structure, four monomeric six-membered cyclo-FLP units are connected by four CO2 molecules to form the supramolecular ring system. The P/B cyclo-FLP 6 undergoes a variety of additional cycloaddition reactions.  相似文献   
16.
Cyclic peptides with disc-shaped structures have emerged as potent building blocks for the preparation of new biomaterials in fields ranging from biological to material science. In this work, we analyze in depth the self-assembling properties of a new type of cyclic peptides based on the alternation of α-residues and cyclic δ-amino acids (α,δ-CPs). To examine the preferred stacking properties adopted by cyclic peptides bearing this type of amino acids, we carried out a synergistic in vitro/in silico approximation by using simple dimeric models and then extended to nanotubes. Although these new cyclic peptides (α,δ-CPs) can interact either in a parallel or antiparallel fashion, our results confirm that although the parallel β-sheet is more stable, it can be switched to the antiparallel stacking by choosing residues that can establish favorable cross-strand interactions. Moreover, the subsequent comparison by using the same methodology but applied to α,γ-CPs models, up to the moment assumed as antiparallel-like d,l -α-CPs, led to unforeseen conclusions that put into question preliminary conjectures about these systems. Surprisingly, they tend to adopt a parallel β-sheet directed by the skeleton interactions. These results imply a change of paradigm with respect to cyclic peptide designs that should be considered for dimers and nanotubes.  相似文献   
17.
The creation of dimeric boron difluoride complexes of chelating N-donor ligands is a proven strategy for the enhancement of the optoelectronic properties of fluorescent dyes. We report dimers based on the boron difluoride hydrazone (BODIHY) framework, which offer unique and sometimes unexpected substituent-dependent absorption, emission, and electrochemical properties. BODIHY dimers have low-energy absorption bands (λmax=421 to 479 nm, ϵ=17 200 to 39 900 m −1 cm−1) that are red-shifted relative to monomeric analogues. THF solutions of these dimers exhibit aggregation-induced emission upon addition of water, with emission enhancement factors ranging from 5 to 18. Thin films of BODIHY dimers are weakly emissive as a result of the inner-filter effect, attributed to intermolecular π-type interactions. BODIHY dimers are redox-active and display two one-electron oxidation and two one-electron reduction waves that strongly depend on the N-aryl substituents. These properties are rationalized using density-functional theory calculations and X-ray crystallography experiments.  相似文献   
18.
In the present research, the synthesis, spectroscopic characterization, and structural investigations of a unique ZnII complex of imine-functionalized polyhedral oligomeric silsesquioxane (POSS) is designed, and hereby described, as a catalyst for the synthesis of cyclic carbonates from epoxides and CO2. The uncommon features of the designed catalytic system is the elimination of the need for a high pressure of CO2 and the significant shortening of reaction times commonly associated with such difficult transformations like that of styrene oxide to styrene carbonate. Our studies have shown that imine-POSS is able to chelate metal ions like ZnII to form a unique coordination complex. The silsesquioxane core and the hindrance of the side arms (their steric effect) influence the construction process of the homoleptic Zn4@POSS-1 complex. The compound was characterized in solution by NMR (1H, 13C, 29Si), ESI-MS, UV/Vis spectroscopy and in the solid state by thermogravimetric/differential thermal analysis (TG-DTA), elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), cross-polarization magic angle spinning (CP MAS) NMR (13C, 29Si) spectroscopy, and X-ray crystallography.  相似文献   
19.
Transition-metal alkylidenes have exhibited wide applications in organometallic chemistry and synthetic organic chemistry, however, cyclic Schrock-carbene-like bis-alkylidenes of group 4 metals with a four-electron donor from an alkylidene have not been reported. Herein, the synthesis and characterization of five-membered cyclic bis-alkylidenes of titanium ( 4 a , b ) and zirconium ( 5 a , b ) are reported, as the first well-defined group 4 metallacyclopentatrienes, by two-electron reduction of their corresponding titana- and zirconacyclopentadienes. DFT analyses of 4 a show a four-electron donor (σ-donation and π-donation) from an alkylidene carbon to the metal center. The reaction of 4 a with N,N′-diisopropylcarbodiimide (DIC) leads to the [2+2]-cycloaddition product 6 . Compound 4 a reacted with CO, affording the oxycyclopentadienyl titanium complex 7 . These reactivities demonstrate the multiple metal–carbon bond character. The reactions of 4 a or 5 a with cyclooctatetraene (COT) or azobenzene afforded sandwich titanium complex 8 or diphenylhydrazine-coordinated zirconacyclopentadiene 9 , respectively, which exhibit two-electron reductive ability.  相似文献   
20.
《Mendeleev Communications》2020,30(5):563-566
  1. Download : Download high-res image (59KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号